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I. INTRODUCTION

This report has been prepared in response to a letter request from Margaret R.

White of the Lawrence Berkeley Laboratory dated March 5, 1979 and an inter-

agency agreement DOE IA #DE-A102-79CH10025 between the National Aeronautics

and Space Administration (NASA) - Lyndon B. Johnson Space Center (JSC) and the

U.S. Department of Energy (DOE). The report presents the results of a study

performed by personnel within the NASA - JSC Life Sciences organization in

conjunction with elements of The Boeing Company. In preparing this report, an

effort has been made to respond to the letter and intent of the Statement of

Work (SOW) included in the interagency agreement.

A. OBJECTIVES

One objective of the study is to assess the effects of all curently known

deviations from normal of medical, physiological and biochemical parameters
1

which appear to be due to zero gravity (zero-g) environment and to accelera-

tion and deceleration to be experienced, as outlined in the reference SPS

design, by space workers. Study results are based on current knowledge and

the current SPS Reference System Report, DOE/ER-O023, October 1978. These

results include:

a. Indentification of possible health or safety effects on space workers

- either immediate or delayed - due to the zero gravity environment

and to acceleration and deceleration,

b. Estimation of the probability that an individual will be adversely

affected.

1Although the SOW specified that only "the zero gravity environment and

accelerations will be considered", NASA has taken the liberty of includ-

ing potentially adverse effects/affects caused by other stresses of work-

ing in the space environment. This was done to provide relevant informa-

tion which might otherwise have been excluded from consideration.



c. Description of the possible consequence to work efficiently in persons

adversely affected, and

d. Description of the possible/probable consequences to immediate and

future health of individuals exposed to this environment.

Another objective of this study is to prepare a research plan which addresses

the uncertainties in current knowledge regarding the health and safety hazards

to exposed SPS space workers. The plan is presented in section Vl, Research

Planning. It identifies current on-going research, proposed research to sup-

port a Space Operations Center (SOC) program, and research that will be recom-

mended specifically to support an SPS program.

B. BACKGROUND

NASA has drawn heavily on the biomedical results from the Apollo and Skylab

missions, and the Apollo-Soyuz Test Project (ASTP). Current knowledge of the

effects of weightlessness and acceleration/deceleration is updated. Where

appropriate, we have used the biomedical results of all prior manned missions

flown by the United States as well as the groundbased experimentation done in

conjunction with these flight programs. Information from Soviet Union space

studies has been used where possible but is limited by credible sources of

doc_entation containing sufficient supporting data.

Significant information used as a base is summarized in section IV and is

included in matrix form in section Ill.

It is recognized that the sources of current knowledge are from prior programs

that subjected crewmembers to situations and conditions not fully representa-

tive of the situations and conditions that future SPS space workers might

encounter. To formulate their predictions of hazards, NASA and Boeing person-

nel assigned to this study have made a determined effort to identify and

define the nature and magnitude of these differences. Factors involved in

comparing past and future missions are shown in figure I-1. Some of the major

differences in program requirements relating to the SPS space workers vs. the

astronaut crews are shown in figure I-2.



CREW (SPACE WORKERS)
o TYPE OF PERSONNEL

o PREPARATION AND TRAINING

o PRE-, IN-, POSTFLIGHT ACTIVITIES
o REGIMENTATION AND DISCIPLINE

o ETC.

HABITAT
o----E'I_W_ONMENTS

o SHIELDING

o RECREATION AND REST
o FOOD AND NUTRITION

o PRIVACY

o ETC.

MISSION FLIGHT PARAMETERS

o ORBITS
o ACCELERATIONS

o SOLAR ACTIVITY PERIODS

o ETC.

CAREER*

o TOTAL TIME IN SPACE

o CUMULATIVE PSYCHOLOGICAL/

PHYSIOLOGICAL EFFECTS

o JOB FATIGUE
o SPACE TIME/GROUND TIME

*NOTES: DURING A 5-YEAR CAREER WITH A 90 DAY UP/90 DAY DOWN, A PERSON MAY
SUFFER FROM SPACE ENVIRONMENT EFFECTS FOR 4 TO 5 MONTHS OUT OF EACH 6

MONTHS, RESULTING IN A CAREER SITUATION OF BEING IN A DEVIATE PHYSICAL

CONDITION FOR 3 1/2 TO 4 YEARS TO THE 5 YEAR TOTAL.

AFTER THE 84 DAY SKYLAB MISSION, TWO CREWMEN HAD NOT REGAINED HEEL
BONE CALCIUM BY DAY 95 POSTFLIGHT.

FIGURE I-1 Factors involved in comparing past and future missions.



io THE TYPE OF PERSONNEL SELECTED:

SPACE WORKERS

o MALE-FEMALE VS.
o BROAD AGE RANGE VS.

o PHYSICALLY BASICALLY UNSCREENED VS.

o LARGE CREWS VS.

SKYLAB ASTRONAUTS

o ALL MAtE
o LIMITED RANGE

o PHYSICALLY SCREENED AND

DEVELOPED

o 3-MAN CREW

2. THE EXTENT AND TYPE OF CREW PREPARATION FOR SPACE DUTIES:

SPACE WORKERS

o _RATION TIME AND

TRAINING, LIMITED PRIMARILY

TO JOB RELATED ACTIVITY, WITH
MINIMUM SPACECRAFT PHYSICS &

SYSTEMS, HABITABILITY, ETC.

SKYLAB ASTRONAUTS

o SEVERAL YEARS OF
BROADBASED EDUCATION AND

TRAINING IN ALL ASPECTS

OF MISSION ACTIVITIES
WITH EXTENSIVE EDUCATION

IN FUNDAMENTALS OF ALL

SCIENCES INVOLVED IN

PROGRAM.

3. THE NATURE OF THE MISSION ACTIVITY ASSIGNMENTS AND THE FREOUENCY AND

DURATION OF FLIGHT TIME/GROUND TIME:

SPACE WORKERS SKYLAB ASTRONAUTS
o VARIETY OF SPECIALIZED SKILLS o EACH CREW MEMBER CAPABLE

(WITH MINIMUM PROFESSIONAL OF ALL SCIENTIFIC,

ENGINEERING AND SCIENTIFIC TECHNICAL AND MANAGEMENT

SKILLS). REOUIREMENTS.

o WORK AT PEAK EFFICIENCY FOR o
MAXIMUM SAFE PERIOD DURING

MISSION. RETURN TO SPACE IN

SHORTEST SAFE AND PRACTICAL TIME.

WORK AT HIGHLY MOTIVATING
JOBS AT CAREFULLY

SCHEDULED TIME LINES

BASED ON METABOLIC AND

EXPERIMENT REOUIREME_TS.
MISSION DURATION BASEr ON

CREWS' CONDITION

(CAREFULLY MONITOREn).

RETURN TO SPACE NOT A
PRESSING ITEM.

Figure 1-2 Major differences in program requirements relating to the space
workers vs. astronaut crews.
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C. APPROACH

The approach used by NASA in performing this study was to assign qualified and

experienced scientists in various life sciences disciplines to identify and

define the possible environmental effects on SPS space workers. The NASA par-

ticipants worked closely with an aerospace contractor (The Boeing Company) who

was responsible for coordination, compilation, collation and documentation of

the information provided. NASA and Boeing participants drew extensively from

documented research experiences and available expertise of prior manned space

flight programs.

Sources of information includes:

o Documented biomedical results from Skylab and other manned space

missions. (Limited Soviet data were included from credible sources

containing sufficient supporting data).

o Documented results form ground-based biomedical research.

0 Documented results from ground-based tested and verified design and

operational approaches.

Documented information from other programs involving isolated crew

habitation and confined quarters, i.e., Arctic and Antarctic activi-

ties, off-shore oil "'uwl_, u,,u=,_o v,v_ ......,.......... -...........operac_ .... _='_ IToU+_ _uhmarine

duty, etc.

o Direct contact with designated NASA or contractor expert consultants.

o Feedback from review meetings and comments on submitted reports.

The data base from these sources is comprehensive and includes:

Results from three major manned space flight programs of the United

States. They are: seven Apollo flights, three Skylab missions and the

Apol lo-Soyuz project.



o Results from extensive ground-based and flight research in all human

body systems. (The subjects were predominantly male.)

o Experiences gained from development of systems designed to support

space flight. Thesesystems are for health care, life support and pro-
tection, and environment and biological monitoring.

o Results from extensive ground-based development and demonstration

testing.
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II. GENERAL SUMMARY AND CONCLUSIONS

Answers sought for the following critical questions, before commitment to

build and operate an SPS are: How long can humans live safely and work

efficiently in space? What is the maximum duration of an effective work

schedule? What are the total number and frequency of missions to plan as a

career in either low earth orbit (LEO) or geosynchronous earth orbit GEO?

To answer these and other questions for the Apollo program, NASA investigated

the capability of astronauts to cope safely with the stresses associated With

performing a vast battery of flight related tasks. During the Mercury and

Gemini missions, we learned that man could withstand launch and reentry stres-

ses, could perform complex mental and physical tasks for periods of up to 14

days, and could readapt to Earth gravity without adversely altering normal

body functions. During Apollo missions, knowledge and confidence in man's

ability to safely and effectively perform complex tasks in the lunar and space

environments and readily adapt to changing environments was further expanded.

During Skylab, emphasis was directed to man's ability to live and work in

space by performing medical-oriented research experiments and by monitoring

the inflight operation of several major body systems. In addition, dedicated

research medical equipment was tested extensively.

The inflight experiments, designed to contribute to understanding the func-

tioning of major body systems, included the cardiovascular musculoskeletal,

.... k^_- ....... l_n_r _nd _nHn_rin_ systems. It washematologic, vestibular, ,,_auu;,_, ,,=u,v.v_................

shown that a few body systems were not affected, the majority showed adaptive

changes, and there were indications of progressive changes (e.g., bone demin-

eralization, muscular atrophy, plasma volume and red blood cell loss.) These

changes contraindicated long-term exposure to zero-g forces unless corrected.

In Skylab, major emphasis was directed to evaluating on-board life support

systems. These included food, waste management, personal hygiene and inflight

medical support. This data base will be valuable in planning future long-

duration missions.



Evaluation of the medical experiments and the operational medical systems of

the 84-day manned Skylab Ill mission provided a high degree of confidence in

man's ability to work and live safely in a space environment for periods which

may exceed 120 days.

Although most adverse affects experienced during space flight soon disappeared

upon return to the Earth's environment, there remains a definite concern for

the long-term effects to SPS space workers who might spend as much as half

their time in space during a possible five-year career period. The proposed

90-day up/90-day down cycle, coupled with the fact that most of the effects of

weightlessness may persist throughout the flight along with the realization

that recovery may occupy much of the terrestrial stay, may keep the SPS work-

ers in a deviant physical condition or state of flux for 60 to 100 percent of

their five-year career. Further studies in effects/affects of sequential

adaptation from one-g to zero-g, and reverse, will be necessary before a five-

year career period can be evaluated properly.

The NASA and Boeing scientists involved in this study have concluded that

there is substantial evidence to indicate that only preventable and corrective

adverse effects will be experienced by SPS space workers. They further

believe that, although additional potentially adverse effects may be identi-

fied prior to the early SPS missions, counteracting or ameliorating approaches

can be developed contemporaneously to avoid any adverse effects to their

health and safety.

This position should not be construed as having insufficient concern for the

safety and health of the SPS space workers. It is based on the postulation

that NASA/DOE will conduct adequate research and development to recognize

potential threats and provide countermeasures to protect the workers. It

further presumes that workers will be selected, trained, and motivated to make

proper use of equipment, and approaches will be designed to make their careers

in space healthy and safe.

8



The study did not include the effects of radiation.

There are several aspects of this study that deserve consideration if the

conclusions presented are to be maintained in a proper perspective.

I. Conclusions based on "current knowledge" are derived from prior manned

space flights where the type and condition of the crew and the mission

conditions exposing the crew to adverse effects of the space environ-

ment are in many respects different from those anticipated for future

SPS space workers.

. The final definition of the role that man will play in space and the

details of his living and working conditions will evolve during the

next 15 to 20 years. We will gain additional experience through

development and operations for precursor space projects detailed in

the Space Transportation System (STS) and the SOC programs.

. The NASA Life Sciences and Crew Systems organizations will gain an

abundance of test data relating to the physiological and psychological

stresses to be experienced by the SPS crews and their families. They

are confident that the means to ameliorate or prevent any adverse

effects due to these stresses will be developed. The information can

be made available to the DOE at appropriated intervals during the

developmental phases of the SPS program.

. Although certain biomedical problems are known to exist in today's

manned missions and complications are expected to occur when large

numbers of people begin to make a career of working in space, our

scientist and technical experts believe that these problems will be

resolved and that humans will be able to live and work effectively in

space without unusual degradation to their health, safety, and general

well being.



Ill. INVENTORY OF HUMAN RESPONSES TO SPACE FLIGHT

This section presents a summary of known deviations from normal of human body

systems in response to the space flight environments. It also includes

methods of amelioration and a prognosis of impact on SPS space workers.

An encapsulated Inventory of Human Responses to Space Flight in matrix form,

which follows, was derived from the American biomedical research programs in

space. The major body systems/research entities in the order in which they

appear are listed below. Detailed discussion of each entity starts on page

46.

A. Musculoskeletal System

B. Cardiovascular System, including B.I. Hemodynamics,

B.2. Hematology, and B.3. Immunology

C. Nervous System

D. Neurophysiology, including D.I. Vestibular, D.2.

Special Sense Organs, and D.3. Other Sensors

E. Excretory System

F. Digestive System

G. Respiratory System

H. Reproductive System

I. Biochemistry

J. Endocrine System

K. Energy Metabolism

L. Fluid Shifts

M. Integumentary System

N. Food and Nutrition

O. Electrolyte Balance

10
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IV. DISCUSSION OF HUMAN RESPONSES TO SPACE FLIGHT

This section contains discussions relating to the responses of humans to

weightlessness, acceleration/deceleration and other elements of space flight

which may affect the health and safety of SPS space workers.

A. WEIGHTLESSNESS

The weightless environment of space flight has been available for scientific

investigation only since the early 1960's. The ability or inability of the

human physiological system to adapt to this unique environment and subse-

quently to readapt to a one-g environment may ultimately limit the duration of

manned space flights. This section contains a description of the general phy-

siological effects of weightlessness, with emphasis on the physiological

effects that could limit mission durations in the absence of effective

countermeasures and with special reference to mission operations. Whenever

morphological changes follow their physiological counterparts, the implica-

tions are discussed.

Research programs at NASA are carried out by many teams of investigators who

utilize different approaches and methods in studying facets of the overall

problems. Whenever possible, this section will attempt to unify the various

research results and to present a composite picture or status of test results

for each organ system or physiological function.

Definition

When the inertial forces of an orbiting body exactly balance the gravitational

forces, the resultant forces impinging on the body have a magnitude of zero.

This state is referred zero-g, null gravity, or weightlessness.

It is only during space flight that weightlessness is produced for any

extended period. However, the zero-g state can be produced for brief periods

within the Earth's atmosphere. Aircraft flying a Keplerian parabolic trajec-

tory have produced periods of weightlessness for as long as 60 seconds (54).

These brief periods of zero-g have limited usefulness for investigations of
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the physiological effects of weightlessness; they are most useful for develop-

ing and evaluating space-flight hardware and procedures. Other available

methods by which certain effects of the weightless environment on living sys-

tems can be simulated more or less realistically depend on the phenomenon

being observed. Bed rest and liquid immersion have been used for may years to

simulate the effects of space flight on the human musculoskeletal, cardiovas-

cular, fluid, hormonal and electrolyte control systems. These analogs of

weightlessness provide an opportunity to test hypotheses, explore mechanisms,

and evaluate countermeasures in areas where physiological effects similar to

those observed in zero-g are know to occur.

Weightlessness is known to affect several physiological systems including

musculoskeletal, cardiovascular, humoral, vestibular, hormonal and electrolyte

control. Many of the changes are not fully realized until return to the one-g

environment.

Gravitational forces have been present in the evolutionary development of

every species of land animal and plant. The anatomical placement and mass of

the skeleton and musculature of land animals have subsequently evolved to

maintain posture and provide locomotion against these gravitational forces.

To enable man and other animals to acquire and maintain posture and body

orientation in normal gravity, the central nervous system interprets visual,

kinesthetic, vestibular, and statokinetic signals to produce the "appropriate"

gravity-dependent sensorimotor response. Both the mechanicoreceptors within

the body and the learned central nervous system interpretations are turned to

the terrestrial weight/force relationship. Further, the cardiovascular system

of man and of other aninals have evolved anatomical structures and physiolog-

ical mechanisms (e.g., cartoid sinus reflex) to overcome changes or orienta-

tion with respect to gravitational forces.

In essence, the "stress" of weightlessness is the removal of forces to which

the body is adapted and for which the body is genetically designed to counter-

act. Adaptation to the weightless environment involves disuse or modified use

of these structures and mechanisms. Rapid and complete adaptation to a

weightless environment is desirable for enhanced performance during space
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flight. However, the degree of adaptation during weightless exposure may

affect the severity of problems encountered upon return and readaptation to

the one-g environment.

The weightlessness of the space environment applies predictable stresses in

selective modes to human subjects and results in fairly predictable responses.

A number of these responses appear to be either deleterious to the continued

health and well-being of anyone while in space, particularly over protracted

periods, or somewhat prejudicial or disabling to anyone during and immediately

after return to a gravity-based earth existence. At least one response, loss

of structural integrity of bone, may not be fully reversed for several months.

The organ systems and functions recognized as sensitive to the changes to and

from weightlessness are the mu. _ oskeletal system, the cardiovascular system,

the immune system, the end_ _ _ system (secondarily), and bioenerqetic

control.

The organ systems that have suffered minimal

changes during space exposure include:

Reproductivce

Digestive

Respiratory (in zero acceleration)

Lymphatic

Nervous (especially psychomotor, behavior,

ability)

Excretory

Sensory (except vestibular)

or no measurable functional

judgement, problem-solving

Responses are classified as gross-level effects and less important effects.

Gross-Level Effects

Antigravity muscle mass loss, is probably comprised of fluid surroundinq the

muscle fibers and protein from the muscle fibers themselves. Other skeletal

muscles exhibit these losses to a lesser degree. There is a small, reversible

loss of strength and ability to perform work at maximal levels.
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Skeletal intergrity is compromised by slow losses of the protein matrix of
bone as well as of bone mineral, leading toward osteoporosis. Recovery is

knownto require a protracted period.

There is a fluid shift, particularly from the legs to the head and upper

torso, and some fluid is lost, probably from the blood plasma primarily with
some contribution of interstitial fluids from leg musculature. The fluid

shift to the upper regions causes engorgement of veins, puffiness of disten-
sible regions of the face and neck, and sinus and oropharyngeal congestion.

These changes possibly contribute to the development of untoward vestibular

responses including nauseaand vomiting.

Cardiovascular adaptability or competence (orthostatic tolerance) is compro-
mised by weightlessness. This finding is demonstrated by stress tests

including lower body negative pressure (LBNP) upon return to an erect posture
in normogravity following space exposure.

Less Important Effects

Less obvious changes that may be secondary or tertiary level effects include:

Skin infections which might be a result of defense system chanqe or depres-

sion, inadequacy of provisions for maintaining hygiene, increased virulence of

microbial invaders, or other cause.

A loss of red cell mass, probably related to depression of hemopoietic

capabilities.

Changes in neuroendocrine activity as measured in blood and urine specimens,

with especial reference to electrolyte and water balance, electrolyte losses

and plasma volume loss.

Physical injury produced by an inflexible or poorly fitting space garment

after the subject has experienced spinal elongation on other anthropometric

changes in null gravity.
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Reduced sensory accuity or discrimination have been reported by some Apollo

and Skylab astronauts. These have been manifest as a reported inability to

taste spices in foods. Diminution in ability to smell due to engorgement of

mucous membranes in the head and/or the lack of normal convection currents may

contribute to this condition.

A catch-all category that produces the readout that bioenergetic control has

been compromised; maximal work performance capability is reduced and the cali-

bratable responses among energy output, heart rate and oxygen uptake lose

their quantitative interdependence.

Musculoskeletal System

Reduction of extermal forces acting on the weight-bearing structure of the

body results in loss of calcium and other minerals important to bone integ-

rity. Animals reared on a centrifuge where they are exposed to elevated g

loadings develop enlarged skeletal members. Human inactivity such as bed rest

causes some members of the skeleton to lose mineral and leads to decreased

density and increased brittleness of bone. The skeletal response applied load

is described by Wolff's law as a linear one, hence there is assurance that a

program to stress the skeleton should prevent demineralization. Also a host

of factors that influence mineralization can be manipulated; e.g., vitamin D,

calcitonin, parathormone, calcium, phosphorus, and nutritional requirements.

Androgenic hormones might also be involved. However, means that have been

tested in bed rest and in space have met with little success - calcium loss

has continued throughout the longest space missions to date, 175 days (Soviet

data).

Three of the Skylab crewmen exhibited loss of o8 ealei_ (heel bone) material,

and none showed an loss from the arm skeleton. One had regained bone loss by

the 87th day postflight, and the other two had not regained their losses by

the 95th day. Losses were correlated with urinary hydroxyproline excretion

which is thought to be an indication of bone matrix (protein) loss.

Urinary calcium excretion was high in all Skylab crewmen. As expected, fecal

calcium excretion was greater than urinary calcium. The rate did not subside.

Of particular note is the observation that whereas excretion of calcium in
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urine reached a plateau (twice or more than normal at l-G), the amount of

calcium in the feces continued to increase for the full F_4 days in all three

astronauts of the SL-4 mission. The average loss from the heel bone was about

3.9% per month. Phosphorus loss was similar. Urinary calcium and phosphorus

excretion had returned to normal in less than one week postflight, but bone

structure had not been rebuilt. As noted above, upwards of three months were

required for bone resynthesis. The loss was of no immediate concern, but it

has a great deal of potential significance for long duration missions because

the loss of total body calcium was about 0.4% per month.

Skeletal stress is normally produced by the action of gravity and by muscular

force. In space, without apparent gravity, exercise from 3(Iminutes per day

on Skylab 2 to 90 minutes per day on Skylab 4 did not prevent calcium excre-

tion and bone demineralization. Soviet experience on Salyut 6 which involved

exercise for periods of up to 150 minutes per day on flights to 175 days was

similar in that bone loss continued. There is reason to expect that a novel

exercise program can be synthesized that will more nearly duplicate the

natural loads on the skeleton and maintain skeletal integrity, perhaps when

augemented by nutritional factors, drugs, longitudinal compression of skeletal

members, or other techniques short of providing artificial gravity.

Intract_Oility of the demineralization phenomenon suggests that a part of the

causation has not been considered. Perhaps a sensor is causing inappropriate

decalcification, mobilizing calcium to meet an electrolyte balance reQuire-

ment, while another part of the control system is causinq the calcium to be

excreted. If this is true, then loading calcium in the intake should suppress

demineralization and urinary calcium. However, in bed rest studies loading

calcium does not suppress urinary calcium; it appears to suppress deminerali-

zation for a time (up to 3 months) but then decreased intestinal absorption

becomes so great that balance goes negative.

Without remedial measures, missions of R to 9 months would not be precluded,

based on our present understanding of skeletal dynamics in weightlessness.

Very lengthy missions would be precluded because of our belief that serious

degradation to trabecular bone represents a morphological change that cannot

be corrected.
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During hypodynamic conditions such as bed rest, muscle size and strength are
reduced. The resulting atrophy can be followed by measurement of excess

nitrogenous compoundsin the urine and by reduction in muscle volume. The

musculature most affected is that involved in countering gravity, primarily in

the legs. The most significant way to maintain musculature (tonus, strength,

endurance) is to maintain a level of exercise which will prevent any loss of
or change on the physiological properties of muscle. It is generally assumed
that a properly designed exercise program will also result in sufficient

skeletal stress to maintain the skeleton in prime condition, but the results

from bed rest and space tests have thus far been disappointing.

The loss of nitrogen, both in increase in urinary nitrogen and by balance

study (which takes into account the dietary protein intake) was significant;
distinctly greater than previously noted in any bed rest study, and it contin-
ued for the full length of the Skylab flights.

In Skylab, there was no loss in work capacity. Muscular strength was slightly

reduced. During postflight testing, work capacity was severely reduced, but
the reduction was attributed to reduced cardiac output.

There was loss of nitrogen, indicating a loss in muscle mass which was also

confirmed by measuring limb girth and by biostereometrics. The degree of

atrophy is speculative as the fluid shift adds uncertainty to the interpreta-

tion of volume measurements. One investigator suggested the figure of 300 ml
for muscle atrophy in Skylab astronauts, based on recovery kinetics.

Calculations of muscle tissue loss from nitrogen balance data indicated much

greater muscle atrophy. These data indicate a meanmuscle tissue loss among

the three Skylab-4 astronauts of 1.9 kg. In recovery on Earth, there was a

sharp drop in urinary nitrogen, to well below pre-flight levels, consistent

with rebuilding of muscle tissue.

Postflight electromyographic studies on Skylab and the ASTPprogram showed

muscle superexcitability and increased fatigability along with reduced tension
capabiltiy. The ASTPdata also showedincreased electrical efficiency of arm

muscles and decreased electrical efficiency of leg muscles.
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Changes in size and electromyographic properties of muscle after prolonged

space flight indicate that absolute muscular integrity has not been achieved

by exercise. The experience of Skylab-4 indicated that there should be no

concern for operational performance in stays of 90 days; from the continuation
of increased urinary nitrogen excretion throughout flight, however, the dura-

tion of "no concern" beyond 90 days is uncertain, even with an exercise

program.

Cardiovascular System

Hemodynamic s

The normal or customary human tolerance to the stress of upright posture in

one-g (orthostatic tolerance) is temporarily reduced after space flight. This

is manifested subjectively by symptoms presaging syncope (faint-headedness,

dizziness, weakness, transient instability upon standing) and objectively by

test signs and cardiovascular measurements (increased heart rate, decreased

pulse pressure, presyncope). The fairly consistent finding of a 10% loss in

plasma volume after space flight may be a contributory factor in the develop-

ment of orthostatic intolerance. Signs and symptoms may persist for up to one

to two weeks after flight without a discrete mission duration dependency. A

special concern arises when accelerative (decelerative) forces upon the long

axis of the body (+Gz) are applied during crucial tasks, e.g., on reentry. To

prevent tolerance from being exceeded, a cardiovascular counter pressure gar-

ment was worn to provide mechanical counterpressure to the lower extremeties

to reduce the postural hypotension of effects following landing and operations

under one-g conditions.

No specific inflight operational problems are known that have a cardiovascular

origin. A headward fluid shift may degrade performance, at least early upon

attaining orbit, by virtue of reported feeling of malaise, headache, sinus

congestion, and a sensation of head fullness.

Exercise capacity is moderately and transiently reduced postflight but appears

well maintained inflight. The current hypothesis relates this postflight

decrement in exercise capacity causally to the same mechanisms involved in

reduced orthostatic tolerance.
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Blood and fluid redistributions such that the heart does not fill normally

seem to be at the core of the total phenomenon of orthostatic intoleranc. It

is conceivable that early inflight space sickness may be causally related.

Alterations observed in inflight electrocardiograms are also probably directly

related to cephal ad fluid shi fts.

Measurement of electromechanical properties of the heart postflight against a

preflight baseline in both resting and stress condition revealed changes in

systolic time intervals and reduced amplitude of the first heart sound.

Recovery to preflight baseline required less than 31 days postflight, but the

capability for maximum levels of exercise was depressed for perhaps two

months.

Measurement of cardiac electrical parameters by vectorcardiography, and pre-,

in- and postflight with ergometer and LBNP stress, revealed minor changes

between resting values, pre- and postflight. Lower body negative pressure

stress added to the changes. The most unfavorable responses to the LBNP

stress diminished after five to seven weeks of flight. There were small

changes except at recovery when low cardiac output compromised exercise cap-

ability. The changes during flight included increased QRS vector magnitude

and reduced heart rate and response to exercise compared to preflight. The

unfavorable responses to LBNP inflight and to exercise postflight were pre-

syncopal in nature and of sufficient severity to cause early termination of

test protocols. It should be noted that these failed protocols stem form

inadequate venous return and consequent reduced cardiac output; the heart

itself is not necessarily implicated.

The effect of the reappearance of hydrostatic forces due to reentry accelera-

tions may accentuate the effects of an inadequate circulating blood volume

after even a few days in space. Skylab experience indicates that adequate

protection against orthostatic hypotension during reentry and durinq the first

few hours after flight can be provided by a counterpressure garment. This

countermeasure is indicated during any significant exposure to +Gz accelera-

tions, as will be experienced by SPS crewmen 1. Recumbency can be of further

1The effects of acceleration/deceleration is discussed in section B.
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benefit during the first few hours after flight in cushioning the cardiovascu-
lar effects of return to one-g by preventing large shifts of intravascular

fluids to the lower extremity vessel s and extravascular compartments.

X-ray determinations of the cardiac area showedreduced dimensions postflight,
attributed to either a loss of cardiac mass or a deficit in volume return to

the heart. Recovery trends were noted in four or five days.

Measurementsof heart parameters by echocardiography showed that the myocard-
ium has lost mass in postflight measurementswhen comparedwith the preflight

baseline. There was a reduction in ventricular end diastolic volume, and a
reduction in stroke volume. These parameters returned to baseline in less

than 30 days postflight. The investigators concluded that impairments of

cardiac function as a result of space flight was relatively minor and recovery
of function after flight was relatively rapid.

The only physical test of vascular parameters (other than venous pressure) was

of compliance; the property of vessels to expand with increases in pressure.

It was found that compliance of leg vessels increased for the first several
days of flight, then lessened, and returned to baseline in several days after

recovery. This would appear to be a small but significant complication to
other factors causing cardiovascular embarassmentupon recovery.

Hematol ogy

Blood studies performed in the space program included cell counts, red cell
mass determinations, hemoglobins, hematocrits, plasma volume determinations,

cytologies, and studies directed to immunological competence.

Plasma volume reduction averaged 8.4 percent in Skylab 2, 1R.1 percent in

Skylab 3 and 15.9 percent in Skylab 4 (see figure IV-l). The plasma volume
loss may be attributed to operation of the Gauer-Henry reflex. An apparent

overload of fluid causes atrial distension which causes the antidiuretic

hormone (ADH) level to fall. Circulating fluid is then lost by diuresis or

reduction in intake, or both (see figure IV-2). Discussion of the endocrin-
ology depicted in figure IV-2 will be found in the sub-section entitled Endo-

crinology. It required approximately four weeks for plasma volume recovery

after Skylab 2, two weeks after Skylab 3, and one week after Skylab 4.
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Red cell mass appears to be some 15 percent reduced at about 40 days from

launch (see figure IV-l). The red cell mass was apparently depleted by a

splenic process. After 30 to 60 days in space, it appears that regeneration

of the red cell mass had been initiated, and that regeneration was nearly com-

lete after B4 days. The kinetics of recovery were identical whether or not

the subject remained in flight, and complete recovery appeared at about day

100.

When the curves for red cell mass loss and plasma volume loss are superposed,

as seen in figure IV-l, the kinetics of production of the effects and recovery

are not matched; cell mass is normal while plasma volume is at near maximum

reduction. This leads to rather high hematocrit values unless it is sensed

and corrected.

Examination of erythrocyte shape showed that a significant fraction (about 7

percent) of the erythrocytes had undergone shape transformations to echino-

cytes near the end of Skylab 4. The echinocyte stage is the end stage in a

series of recognizable changes from the disc-shaped red cell to a spheroid

with protuberances. Within two hours after recovery, the echinocyte level had

returned to the baseline value. Shape changes were without apparent signifi-

cance or handicap to the cre_ember.

Polymorphonuclear leucocyte ability to adhere, migrate and phagocytize was

normal. This is a defense and clean-up process.

immunity

Immunity entails a demonstrable level of defense against microbiological

agents. Qualitative and quantitative tests are almost always performed

outside the body, i.e., in vitro, with standardized reagents to show that the

capability exists to repel an invader.

The only systems tested were humoral immunity which involved modified globul-

ins, complement factors, several protein fractions, and B (bursa) lymphocytes

which are carried in body fluids, especially the blood plasma; and cellular

immunity which involves both T (thymus-dependent) lymphocytes and macrophages.

Lymphocytes can engulf and neutralize microbiological agents. (Macrophage

function is less specific and was not tested.)
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The capacity of the humoral system can be demonstrated by enumeration and

quantification of immunoglobulins and other protein fractions.

The capability of the cellular system can be estimated by determining whether

lymphocytes, when stimulated by a reagent, will synthesize additional nucleic

acid, change shape (blastoid transformation) and subsequently engulf bacteria.

Another method of determining immune and defense status is by qualitative and

quantitative estimation of microflora on astronaut's skin, mucous membranes

and in their waste products pre-, in-, and postflight.

A final data source regarding immune status is the incidence of infectious

disease during zero-g exposure and postflight. In Skylab, postflight infec-

tions included a sty, a boil, and a presumed fungal infection.

Principal Skylab findings of the cardiovascular system which might impact

missions lasting longer than six months and which need further definition are:

o

o

o

o

Fluid redistribution inflight,

Plasma volume decrease contributing to orthostatic intolerance,

Red blood cell mass decrease, and

A potential for a significant breakdown in the capability of the

immune system. A depressed or changed immune system, a self-

contained environment, and decreased attention to cleanliness are

conditions favorable to rapid multiplication of microbes.

Nervous System

The central nervous system has not been evaluated by quantitative tests in

space, but many facets of its performance, homeostasis 1, registering of senses

(sight, hearing, etc.), cognitive functions, problem solving, and sleep have

been carried out with no hint of decrement.

1Homeostasis is the state of equilibrium in the living body with respect

to various functions and to the chemical compositions of the fluids and

tissues, e.g., temperature, heart rate, blood pressure, water content,
blood sugar, etc.
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The peripheral nervous system is not known to be affected by weightlessness.

However, weightless effects on other systems, e.g., altered calci_-potassium

ratios, could significantly affect nerve thresholds and recovery and thus pro-

duce alterations in nerve function.

In Skylab, task performance in zero-g equaled ground baseline efforts after a

few trials, and performance continued to improve with time.

Heart rates were usually elevated inflight in the U.S. programs, particularly

before stress tests. There were also reported fluctuations in heart rate in

the Soviet Union programs.

Sleep was found to be adequate in quality and duration. In the postflight

period, REM sleep appeared earlier in the night (reduced latency) and was

increased in quantity.

The Achilles tendon reflex time was generally shortened for more than four

days postflight. However, for Skylab 3 there was a lengthening which returned

to baseline by 29 days postflight. For Skylab 4, after the initial shorten-

ing, there was a lengthening and a return to baseline by 30 days postflight.

Postflight, muscle electrical activity-time shortened similarly on three crew-

men and increased on one other. Two crewmen showed lengthening for less than

a week and two showed shortening for a similar period before approaching base-

line in the 30 days. A part of these changes is attributable to muscle reac-

tion as well as to nerve conduction.

Neuro physi ology

Vestibular responses in zero-g had been the subject of considerable specula-

tion preflight because one of the sensors, the otolith, is a gravity (vertica-

lity) sensor. Ground-based tests showed it would be able to detect accelera-

tions and decelerations occurring in zero-g, but would lose its usual one-g

stimulus; the remainder of the vestibular apparatus would function in zero-g

identically to the way it functions in normal gravity. Orientation with

respect to gravity in zero-g would, therefore, depend on visual and tactile

cues. Any misfits in the input of information were expected to result in

illusions and confusion.
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In Skylab there was a variety of symptoms. Illustrations include sensations

of rotation, nystagmus, dizziness, vertigo, and postural illusions.

Neurophysiological response by the vestibular and autonomic nervous systems to

zero-g resulted in motion sickness symptoms. Signs included pallor, cold

sweating, nausea and vomiting. Five of the nine Skylab astronauts were

affected, although not always to the vomiting stage. Inflight, complete

recovery from symptoms typically occurred within three to five days. After

this initial period of adaptation, crewmen were virtually free of motion sick-

ness symptoms.

Upon return to one-g, there were several days of unsteadiness while visual

proprioceptive, motion, and gravity cues were readjusted.

Organs of Special Sense

Flight data for these sensory modal ities were not quantitated on Skylab but a

number of phenomena, produced by acceleration, did involve the eyes reflexly.

Some visual experiences in zero-g including ocular counterroling, oculogyric

illusion and oculogravic illusion represent reflex activity of the vestibular

apparatus. None is abnormal, unpleasant, or incapacitating. Nystagmus, on

the other hand, has the same genesis but is mildly unpleasant and temporarily

interferes with vision. It is probable that all of these phenomena were

experienced in Skylab but only nystagmus was reported.

Other Sensors

Homeostasis, the process through which body equilibrium is maintained, is

achieved through sensors. Since the environment to which the body and its

processes must adjust is altered in weightlessness, there is concern over the

adequacy of these responses. In some cases, the adjustment involves a physio-

logical change. For these changes to be acceptable, they must be beneficial

or at least not harmful, and they must be reversible upon recovery. If these

criteria are not met, NASA will seek to prevent or correct the adjustments by

some ameliorative technique. A first step is to determine that the sensors

are functioning in a purposeful manner.

The associated matrix in section Ill entitled, Inventory of Human Response8 to

Space Flight lists data from Skylab experiments and the associated responses.

Interpretations are frequently not clear and more detailed studies will be
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needed to provide suitable solutions to the problems of altered hemostasis in

the weightless environment.

It appears that the nervous system has maintained its stability in the transi-

tion to zero-g, while in zero-g, in the transition to one-g, and during the

body's recovery in one-g conditions. Excellent mental, behavioral and physi-

cal performance was noted both inflight and postflight. While permitting some

detailed changes in the various organ systems which are adaptive in nature

and, in the main, help attune the transition or an organ to a challenge, there

are exceptions which the medical and scientific communities regard with cau-

tion, e.g., potassium loss, reduction in immune competence, demineralization,

muscle atrophy and vestibular performance pattern changes. These may be

desirable adaptations to the new environment; when they aren't, it may be that

the sensors which supply information to the central nervous system (such as

pO2, pCO 2, blood volume, posture) are at fault rather than the nervous system

itsel f.

Motion sickness is likely to occur soon after entering zero-g, and the malaise

lasts for about three days. Nevertheless, duties can be accomplished during

this period. Physical accommodation plus drugs may limit or prevent motion

sickness. Preflight screening may be necessary to eliminate sensitive

individual s.

Current experience indicates vestibular responses would not be a limiting

factor to extended periods in zero-g. Visual acuity, hearing, smell, taste

and touch appear to be normal in zero-gravity and upon recovery, thus they are

not considered to be limiting factors for STS missions.

More detailed studies will be needed to provide the background to judge the

adequacy of the sensors and the systems in which they perform. In this way

the enigmas of potassium and calcium loss can be solved - how sensors are

involved and whether the losses are related to efforts to correct untoward

electrolyte imbalances caused by weightlessness.

The parameters of homeostatic control and the adequacy of the sensors that

serve the system for adaptations to weightlessness are largely unknown. This
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is an important area for research because calcium, potassium, water and nitro-
gen balances are involved. The results will be important inputs to planning
for STSmissions.

Excretory System

The very large body of data on homostasis, hematology, food and nutrition,

endocrinology, metabolism, and biochemistry in space owes its cohesiveness to

the controls governing mineral and fluid balance and excretion. The principal

functional unit in carrying out the operations that result in homeostasis is

the kidney; it excretes excess water and, selectively, electrolytes in the

proper ratio in order to maintain the necessary balance and pH. Other materi-

als excreted are generally waste products. The intestine, lungs and skin also

play important roles in removing products that aid in achieving homeostasis.

Functioning of the control system and the normality of creatinine excretion

prove the intactness of the excretory function in zero-gravity.

There was, however, a slight increase in plasma cretinine in both Skylab and

ASTP. There was nothing to suggest the risk of urolithiasis (formation of

kidney stones), for which some concern has been expressed from the increased

calcium excretion experienced in bed rest simulations and actual space flight;

maintenance of adequate urine volumes will be obviate such risk.

Although there were no specific challenging tests of the excretory system in

space such as were performed on the respiratory and circulatory systems and

musculature, nothing was found that indicates any limit to stays in space

based on decrements in renal performance.

Digestive System

Foods of known composition have been tested during simulations at reduced

atmospheric pressures and pre- and postflight during U.S. space missions.

Data from these tests have been used to establish baseline norms and

postflight differences for each astronaut.

Essentially, the digestive system has functioned in a normal, predictable

manner. Foods in the Apollo Program, caused soft stools, pre-, in-, and
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postflight. Flatulence, when present, was worsened in reduced environmental
pressures, in simulations and inflight. Astronauts occasionally took an

anticholinergic drug (Lomotil) to control bowel activity.

There was one case of a flu-like upper respiratory condition which was accom-

panied by nausea and vomiting. Also there have been cases of nausea and

vomiting which were attributed to motion sickness and which lasted from one to

five days.

Departures from anticipated in-and-out nitrogen and electrolyte balances were

caused by muscle atrophy, bone demineralization, and excretion of more potas-

sium than was ingested.

Future food tests will be conducted at standard atmospheric pressure; exces-

sive flatulence should not recur, and no aspect of digestive system function

should limit orbital stay times.

Respiratory System

Since the lung is a highly elastic structure with air and fluid-filled

regions, it is sensitive to influence that restrict its expansion or contrac-

tion and displace or augment its fluid component, e.g., accelerations.

Very sophisticated inflight determinations of pulmonary function of Skylab

showed no decrement in the ability of the respiratory system to support exer-

cise. A loss in vital capacity attri .... to :_"'_ -_ _^ .h_ 1,,n_ _r,,1_-

tion offered and obstacle to achieving the deepest inspiration. This loss of

vital capacity did not appear in postflight tests.

Pulmonary function suffers little or no decrement in zero-g. If there is any

decrement, it is constant and not progressive. In healthy subjects, pulmonary

function does not limit exercise capability. The limiting factors are usually

muscular fatigue or circulatory competence, depending on the condition of the

individual.
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Reproductive System

There have been no special tests performed to determine the effect of zero-g

on the male reproductive system. Reported occurrences of congestive prostati-

tis and irritated urethras were caused by wearing a urinal during early space

flights. Space flight has had no demonstrable affect on the male reproductive

system.

A female cosmonaut (Soviet) is reported to have had normal children several

years after her flight in space. While the U.S. has not used female astro-

nauts, space simulation studies do not preclude them from taking part in

future space missions.

Biochemistry

By quantitative chemical analyses, changes in the intracellular and intersti-

tial body fluids can be monitored. Examples of these body fluids are plasma,

lymph and cerebrospinal fluids, parotid secretion and urine.

Analyses for nutritive components (metabolites) in plasma such as amino acids,

nitrogenous compounds, glucose, cholesterol and triglycerides indicate the

normality or abnormality of protein, carbohydrate and fat metabolism during

space flight.

As the space program matured, a battery of tests of increasing complexity car-

ried out on plasma serum and urine, showed a number of changes. Many of these

changes were similar to the effects observed in bed rest. These changes are

regarded as an adaptation response to the weightless condition.

Inflight excretions of sodium, potassium, chloride, calcium, phosphate, and

nitrogen were elevated. Inflight plasma sodium and chloride were reduced and

plasma calcium, phosphate and potassium were elevated. Exchangeable potassium

was reduced postflight, indicating potassium depletion through the reduction

in muscle tissue mass.

Metabolic processes were found to be qualitatively unaffected by weightless-

ness. Quantitative changes were indicated by: reduction in insulin and

glucose during flight, loss in fat stores, altered levels of metabolites of
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protein origin in the plasma suggesting a catabolic process, and losses in

body water and body weight. The known changes are regarded as posing no

threat as they are within normal ranges and are quickly reversible postflight.

Endocrine System

The physiological relationships of the endocrine system influence and regulate

body functions such as excretion, metabolic and neuroh_oral controls to main-

tain homeostatic balance as the body adapts to weightlessness. Endocrinolog-

ical data are obtained from electronic monitoring of the cardiovascular, mus-

cular, and possibly the neurological body systems, and from a detailed analy-

ses of blood and urine specimens for levels of hormones and the substances

they cause to be mobilized, excreted, metabolized, or stored. For example,

cardiovascular monitoring can detect changes in heart rate and blood pressure.

Electromyography detects changes in muscular physiology. Discrete levels of

hormones acting on tissues are detected by blood analyses, and activity

levels, which are longer lasting, are found as traces in urine. These and

other data collected from fluid shifts, energy metabolism, and hematology are

vital adjuncts to assessment of endocrine function and homeostatic

adjustments.

In Skylab, levels of the following hormones were estimated in plasma (ser=B)

or urine, or both; adrenocorticotrophic hormone (ACTH), cortisol, angiotensin

I, aldosterone, insulin, human growth hormone, thyroxine, thyroid stimulating

hormone, testosterone (andosterone), parathormone, calcitonin, antidiurentic

hormone, epinephrine, norepinephrine, total 17-hydroxcorticosteroids and total

17-ketosteroids. Of these, cortisol, epinephrine and norepinephrine are usu-

ally associated with physical and emotional stress.

Significant changes were observed, which varied in magnitude and direction.

They all disappeared shortly after return to Earth. The changes are for the

most part indicative of a successful adaptation by the body to the combined

stresses of weightlessness and flight. It is evident that a new, stable level

of homeostasis is achieved in space and the safe exposure times of crewmen to

the weightless environment is not limited.
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The neurohumorally controlled changes predicted to occur in the process of

adaptation to weightlessness are diagramed in figure IV-2. The predictions

were borne out in well over half the areas which were highlighted. The
remainder are areas in which predictions were borne out equivocally, or neg-
atively demonstrate that there are unknownmechanismsor that the mechanisms
have as yet been imperfectly described.

Energy Metabolism (Metabolic Activity, Work Capacity, Exercise Tolerance)

In normogravity, weight and friction induced by gravity usually suffices to

maintain a person°s stance at a chosen place.

Coversely, maintaining one's stance at a chosen place in zero-g requires means

for restraining or stabilizing oneself so that one can exert forces without

being displaced, and preferably without having to use muscular energy.

In the space program, early efforts were centered on devices involving thrust-

ers to aid mobility and restraint. In the Gemini program, mobility did not

suffer but extravehicular (EVA) activities were compromised by lack of

restraints to ther extent that seemingly simple tasks caused overwork and

produced more metabolic heat than the space suits could handle. These find-

ings caused a shift of emphasis from mobility devices to stabilizing and

restraint devices.

In Skylab, it was found that the isotonic task of riding a cycle ergometer

offered no more of a challenge than in one-g, and, in time, astronauts became

more efficient in zero-g. This test was not carried to a maximum effort,

however, but was at a high level, 230-286 watts, roughly 1/3 horsepower.

Maximum-effort arm and leg flexion and extension showed small decrements when

tested postflight against a dynamometer. With increasing allied exercise on a

zero-g treadmill and other exercise devices, the decrements became less than

0.1% per day in leg extension maximum effort.

Somewhat similar measurements were made postflight in Skylab and ASTP with an

isometric task, while electromyography (EMG) was employed. In this case, it

was noted that EMG changed during holding of less than maximum effort forces,

fatigability was enhanced, and efficiency was degraded.
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Postfl ight, the Skylab astronauts showedsevere decrements in work capacity on
a stationary cycle ergometer. It becameapparent that the cardiac output was

too low to support the levels of exerise that were used preflight and

inflight, hence the problem was in readapting the one-g conditions.

Recovery to baseline capability required, usually, less than a month, but

there were decrements in strenuous whole body exercise capability, such as

running, for approximately two months. Astronaut reported experiences are

parallel. They feel that the appropriate period for rehabilitation following

space flight is three months.

The physiological responses to exercise inflight showeddifferences that can

not be generalized for all crewmen. These included decreased recovery heart
rate, decreased systolic blood pressure, decreased diastolic blood pressure,

increased resting respiratory minute volume, increased pulmonary ventilation,

decreased or increased oxygen consumption and carbon dioxide production,

decreased pulmonary efficiency (lung ventilation necessary to provide a
certain oxygen consumption), and decreased mechanical efficiency (oxygen

comsumption necessary to provide a certain level of energy output). These

changes did not degrade the capability to perform submaximal exercise but did

show that the quantitative relationships amongcardiovascular, respiratory and
musculoskeletal parameters that were obtained during preflight testing were

not maintained in flight.

Flight menus were designed to meet comparable individual energy requirements

under normal gravity conditions, specified nutrient levels, and crew-selected

preferred foods. Energy requirements calculated for each Skylab crewman

averaged 45.68 kilocalories (Kcal) per kilogram (kg) of body weight per day
with a standard deviation of 4.50 Kcal/kg/day. Based on inflight changes in

total body weight, muscle mass, and body volume, they lost weight.

The estimated energy required to maintain a crewmanduring the ASTPmission

was approximately 39 Kcal per kg of body weight per day. This estimate was
based upon preflight measurement of lean body mass and adjustments for

inflight activity levels. Although this lesser amountwas thought to be ade-
quate because of the brevity of the ASTPmission and the failure to achieve

metabolic stabilization, these crewmenlost weight also.
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An awareness of the true energy demandsshould be kept in mind for an under-

standing of the degree of metabolic energy needed for productive work inflight

and without loss of body weight.

The cycle ergometer is regarded as an excellent testing tool but inadequate
for maximal stress to the individual and not suited to an important musculo-

skeletal parameter, maintenance of bone and muscle intergrity, and particu-
larly of antigravity muscles and weight-bearing bones.

It was found that exercise tolerance was maintained quite well in zero-g by a

program that supplemented ergometry with exercise devices which employed the

anti-gravity muscles and weight-bearing long bones. The most pertinent device
resembles a functional treadmill.

It is apparent that work can be done efficiently in a weightless environment
if tasks are properly designed. Man's capability of living and working for

long periods of time in zero-g do not appear to be limited by bioenergitic
considerations.

Physiological Limits

Definitive limits have not as yet been established for continuous or cumula-

tive exposures to the weightlessness of space flight. Several physiological

effects mentioned in the previous discussion could ultimately impose limits on

zero-g exposure. Bone demineralization is the most apparent effect of weight-

lessness that could limit flight durations in the SPS program. Degeneration of

gravity receptors is another potential limiting factor for space-flight dura-

tion; however, the nature and time course for the development of this effect

remain speculative. Both of these effects are only realized with reappearance

of gravitational or other external forces. Other physiological effects of

weightlessness, such as cardiovascular deconditioning, loss of plasma volume,

and immunosuppression, may not be current limiting factors to space-flight

duration but will require monitoring and deployment of appropriate counter-

measures.

Motion sickness appears to be a time-limited annoyance that interferes with

performance. The fluid shift and spinal lengthening that interferes with
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fitting and wearing of emergencyequipment and with physical comfort at work
station equipment can be remedied by forethought and application of better

bioengineering designs.

Exposure limits must be derived through further experimentation and/or pro-
gressively increased exposures to zero-g. Whenestablished, these limits will

likely be a function of the availability of effective countermeasures. More-
over, with sufficient progress in these countermeasures, weightlessness, as

such, may not be the most critical factor for limiting long-duration space

fl ight.

Space experience in the U.S. to date has shownthat man can live and work in

space for periods of as long as 84 days. It has also shown that the most

deleterious effects of zero-g exposure may not be realized until return to

one-g and subsequent readaptat'ion. From physiological evidence amassed

through extensive experimentation in cardiovascular, hematological, endocrino-

logical, vestibular, and musculoskeletal systems, it can be stated that the

tentatively allowable exposure period to zero-g can be safely extended to 6

months. This may not apply to reexposure to zero-g after a recovery period in

one-g; a cumulative problem of more seriousness than an initial exposure to

weightlessness may appear.

Physiological measurements and performance parameters should be carefully mon-

itored during these extended missions to detect debilitating changes that

might occur. This approach of systematically increasing exposure times can be

continued until physiological limits are approached or until operational goals

are real ized.

B. EFFECTS OF ACCELERATION/DECELERATION

Physical forces act on the body to cause acceleration and displacement of the

whole or some part of the body. The extent and the circumstances of the

response of the body to force may result in a range of physiological responses

from a level at which no effect can be perceived or measured to a level

resulting in massive tissue destruction. This section represents an attempt

to differentiate and define the types of forces that may act on the body, to
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identify the physiologic effects, to present limits for these forces, to pre-

sent the rationale for these limits, and to identify areas in which additional

research is required. For the purposes of this section, the forces will be

divided into those resulting in sustained linear acceleration and in angular

accel erati on.

NASA has very limited information on the effects of acceleration/deceleration

in space flight and will be unable to provide substantial information regard-

ing these environments until further research is accomplished.

The results compiled by NASA of extensive studies involving "ground-based"

testing on subjects who have resided in a one-g environment is presented here.

The reader is advised to use care in the application of the information pre-

sented here. Although very limited quantitative analyses and test results

exist, it is known that the nature of the response of the body to linear and

angular accelerations is altered when in the weightless environment and upon

return to one-g after a space flight. The duration of exposure to weightless-

ness is known to influence the extent to which the response of the body to

acceleration is altered and also the length of time to readjust to normal pre-

flight response characteristics.

Sustained Linear Acceleration

Definition and Description

Sustained linear acceleration can be defined as the response of an object or a

body to a net directional force applied over a duration of 0.2 seconds or

more.

Linear acceleration occurs whenever there is a change in velocity of the

spacecraft (e.g., during spacecraft launches and entries). The nature of the

response of the body to linear acceleration depends on a number of character-

istics of the force and resultant acceleration.

The magnitude of the force acting on the body and the mass of the body deter-

mine the magnitude of the acceleration. The duration of the acceleration is a

significant factor in the response of the body, particularly at the shorter
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duration exposures approaching impact (duration < 0.2 second). Also signifi-
cant are the direction of the force vector, the resultant direction of accel-

eration with respect to the orientation of the body, and the specific body
position. The restraint and support systems for the humanbody in an acceler-

ating vehicle determine the manner in which forces are transmitted from the

vehicle to the body and thereby strongly influence the physiological response
to the acceleration.

The symbol go (go_¢g) represents a unit of acceleration equal to 980.665 cm/s2

and equal to the acceleration resulting from the unopposed force of gravity at

sea level. The symbol G is used to denote a nondimensional, relative measure

of either acceleration expressed in multiples of go or a force field expressed
in multiples of the force of gravity. The unit G is used to represent accel-
eration in describing the physiological stresses in response to acceleration

and is sometimes referred to as a unit of physiological acceleration.

Acceleration is a vector quantity, and, in the literature on the effect of

acceleration on mammaliansubjects, the direction or vector of G, or the G
load, is denoted by the North Atlantic Treaty Organization Advisory Group for

Aeronautical Research and Development(AGARD)convention shownin figure IV-3.

The symbols Gx, Gy, and Gz are used as units to express inertial resultants to
whole-body linear acceleration in the three orthogonal axes in multiples of
the magnitude of the acceleration of gravity g. In this usage, G is the iner-

tial force of the body resisting acceleration and the G vector is in the

direction opposite that of the vehicle acceleration. The symbols Rx, Ry, and
Rz denote angular acceleration about the three orthogonal axes as discussed in
the section entitled "Angular Acceleration."

73



+Gy

+Gx
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Figure IV-3. AGARD physiological acceleration system.

Physiological Effects

The physiological response to sustained linear acceleration is a response to

the forces and pressures acting on the body to cause the acceleration. On the

surface of the Earth, the force of gravity acts on every element of body mass.

This force is directional toward the center of the Earth. When a body is

stationary on the surface of the Earth, the force of gravity is countered by

an equal force vector in the opposite direction. This force is effective at

the points of contact of the body with the Earth but must be transmitted to

each element of body mass if the acceleration of the element is to be pre-

vented. The structure of the body has evolved under one-g conditions and is

adapted to the transfer of forces supporting the body (resisting acceleration

to the center of the Earth) for those body positions that are normally assumed

nn Earth.
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Whena space vehicle is accelerated at a given rate, the forces generating the

acceleration must be transmitted from the rocket engines to all mass elements

of the vehicle and to all mass elements of the passengers. The physiological
effect of acceleration occurs whenthe structure of the body is not capable of

transmitting applied forces to each element of the body with the result that
relative movementof body elements occurs and relative pressures within the

body are altered. These effects will be considered in the following para-
graphs for different axes of acceleration as defined in figure IV-3 and for
the physiological systems most limiting in each axis.

The cardiovascular effects of acceleration are generally the most significant.

The force causing the acceleration of the body is transmitted to the blood.

This transmittal of force is accomplished by the following sequence of events.

Blood is displaced in the direction opposite the accelerative force. This

displacement is resisted by the elastic tissues of the body so that a pressure

gradient is created in the vector opposite that of the force causing the

acceleration. Engorgement and pooling of blood occurs in the areas of the

body that experience higher than normal blood pressure. Diminished blood flow

rates and poor oxygenation of tissues result in those areas of the body that

experience lower than normal blood pressure. The greatest changes in cardio-

vascular pressures occur when the acceleration vector is parallel to the

course of the major blood vessels of the body (Gz). The effects are most

severe when these pressures displace blood from the head (+Gz). Progressively

reduced blood pressure in the head will result in loss of visual acuity, gray-

out, b!acko-t, and finally unconsciousness as the oxygenation of the eyes and

the brain is progressively reduced.

The respiratory effects of acceleration result from a change in relationship

of pressure differentials, which, in a one-g environment, facilitate respira-

tion and gas exchange. In a supine subject in a one-g environment (where the

force of gravity is effective in the +Gx orientation), there is normally a

gradient in intrapleural pressure and in both arterial and venous pressures

from dorsal to ventral chest walls (figure IV-4). These gradients do not

interfere with inflation and deflation of the lungs or with perfusion. How-

ever, under severe G loading, the pressure differentials at the intrapleural
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interface resulting from the acceleration becomemore significant. Modifica-
tion of intrapleural pressure by exertion of respiratory musculature in the

chest wall becomesinsufficient to inflate the alveoli near the dorsal chest

wall or to empty the alveoli near the ventral chest wall. In addition, the
pressure gradients in the blood vessels reduce or eliminate perfusion of the

alveoli near the ventral chest wall. Respiration is affected by acceleration
in all axes but is affected most significantly by +G acceleration. Respira-z
tory effects are more likely to be the limiting factor in +Gx acceleration,

however, because there is greater tolerance to cardiovascular effects in that
vector.

There are direct effects of forces due to acceleration on all the body organs

and systems as well as effects secondary to the hypoxia that may result from

the cardiovascular and respiratory alterations and to hormonal response to the
general body stress. Figure IV-5 depicts someof the interrelationships that

may occur at different functional levels.

Table IV-1 contains a listing of subjective effects of sustained acceleration

in each of the possible vectors. These subjective effects derive from the

physiologic effects that have been described previously and bear on the toler-
ance limits that will be discussed in the following paragraphs.

To date, NASAlimits launch and landing accelerations to levels of 3-g or
less.
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Figure IV-4. Influence of +G accelerative stress on intraperitonea] pres-
x

sure. The dorsoventral dimension of the lung is 20 centimeters; the ventral

chest wall is at the top and the dorsal chest wall at the bottom. The single

zeros denote atmospheric pressure in the central portion of the thorax in

the plane of the heart. The values represent positive and negative intra-

pleurai pressures (with directional arrows) and positive pulmonary pressures

(i.e., PA = arterial pressure and PV o venous pressure) expressed in newtons

per square meter (centimeters of water).
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Figure IV-5. Basic mechanisms of accelerative action on an organism.

Cell changes consist of increased activity of lactate dehydrogenase_ (+LDH),

reduced activity of succinate dehydrogenase (-SDH), and reduced quantit)of

ribonucleic acid (-RNA) in cytoplasm.
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TABLE IV-l.- SUBJECTIVE EFFECTS OF ACCELERATION

Magnitude, G Effects

Positive acceleration (+G z)

2.5

3 to 4

4.5 to 6

Equivalent to the erect or seated terrestrial posture.

Increase in weight, increased pressure on buttocks,

drooping of face and soft body tissues.

Difficult to raise oneself.

Impossible to raise oneself, difficult to raise arms and

legs, movement at right angles impossible; progressive

dimming of vision after 3 to 4 sec, progressing to tun-

neling of vision.

Diminution of vision, progressive to blackout after ap-

proximately 5 sec; bearing and then consciousness lost

if exposure continued; mild to severe convulsions in

about 50 percent of subjects during or following uncon-

sciousness, frequently with bizarre dreams; occasionally

paresthesias, confused states and, rarely, gustatory sen-

sations; no incontinence; pain not common, but tension

and congestion of lower limbs with cramps and tingling;

inspiration difficult; loss of orientation for time and

space as long as 15 sec after acceleration.

Negative acceleration (-G z)

I

2 to 3

Unpleasant but tolerable facial suffusion and congestion.

Severe facial congestion, throbbing headache; progressive

blurring, graying, or occasionally reddening of vision

after 5 sec; congestion disappears slowly, may leave

petechial hemorrhages, edematous eyelids.

Limit of tolerance, 5 sec; rarely reached by most subjects.
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TABLE IV-1.- Continued

Magnitude, G Effects

Forward acceleration (+G x)

2 to3

3to6

6 to9

9 to 12

15

Increased weight and abdominal pressure; progressive slight

difficulty in focusing and slight spatial disorientation,

each subsiding with experience; 2G x tolerable at least to

24 hr, 4G x for at least 60 min.

Progressive tightness in chest (6Gx, 5 min), chest pain,

loss of peripheral vision; difficulty in breathing and

speaking; blurring of vision; effort required to main-
tain focus.

Increased chest pain and pressure; breathing difficult,

with shallow respiration from position of nearly full

inspiration; further reduction in peripheral vision,

increased blurring, occasional tunneling, great concen-

tration to maintain focus; occasional lacrimation; body,

legs, and arms cannot be lifted at 8Gx; head cannot be

lifted at 9Gx.

Breathing difficulty severe; increased chest pain; marked

fatigue; loss of peripheral vision, diminution of central

acuity; lacrimation.

Extreme difficulty in breathing and speaking; severe vise-

like chest pain; loss of tactile sensation; recurrent

complete loss of vision.

Backward acceleration (-G x)

Similar to effects of +G x accelermtlon wit_: m_dificationm

produced by reversal of force vector. Chest pressure re-

versed, hence breathing easiez; pain and discomfort from

outward pressure toward restraint harness manifest at ap-

proximately -SGx; with forward head tilt, cerebral hemo-

dynamic effects manifest akin to -Gz; distortion of

vision at -6G x to -SGx; feeling of insecurity from pres-

sure against restraint.
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TABLE IV-1.- Concluded

Magnitude, G Effects

Lateral acceleration (_+Gy)a

Discomfort after I0 sec; pressure on restraint system,

feeling of supporting entire weight on clavicle; inertial

movement of hips and legs_ yawing and rotation of head

toward shoulder; petechiae and bruising; engorgement of

dependent elbow with pain.

External hemorrhage; severe postrun headache (14.5-sec

duration).

aLittle information available.

Physiological Limits

The accelerations that occur or are predicted during space flight can be quan-

tified. However, the concentration of force and the relative displacement

within the body which are the causative agents of the physiological effects

are very difficult to quantify. The physiological effects are very difficult

to quantify. The physiological limits are therefore most easily stated in

terms of acceleration. Different empirically defined limits can be shown to

apply under a variety of conditions of body support and restraint (Figure

IV-6). The effects of these supports are to distribute the force over the

body and to restrict deformation and changes in volume of body segments. The

most effective restraint is immersion in water. When the body is immersed in

water, it becomes part of the liquid system in w_ich it is immersed and there

is good transfer of force without deformation. The air cavities in the body

do allow some deformation that becomes limiting at higher G levels. Tolerance

varies as a function of acceleration vector as shown in figure IV-7. During

practical space operations, it is unlikely that an acceleration will be

restricted to one vector. Since reduced tissue oxygenation and reduced

respiratory ventilation are both likely to be effects of high levels of accel-

eration, it is not surprising that pressure breathing and enriched-oxygen
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breathing mixtures have been shown to increase tolerance to acceleration.

Figure IV-8 shows the upper limit of tolerance of a group of highly motivated

test pilots suitably restrained without water immersion. It can be compared

to the average tolerance values depicted in figure IV-6. The tolerance

limits, therefore, must be stated in terms of the acceleration. The heavy

solid line in figure IV-7 is a plot of required acceleration to achieve Earth

orbit against the required duration of that acceleration. Plotted on the same

graph are some nominal limits for acceleration. This plot illustrates the

physiological trade-off that must be made between short-duration, high-G loads

and much longer duration, lower G loads.

Because overall human tolerance to sustained linear acceleration in the trans-

verse (+Gx) axis is effectively twice that in the vertical (+Gz) axis, all

manned space vehicle launches and entries before the Space Shuttle have orien-

ted thrust near the +Gx axis. Maximal peak +Gx forces for the Apollo space-

craft reached approximately six-g on entry with lesser values for launch and

orbital maneuvers. Mercury and Gemini spacecraft operated at slightly higher

values (figure IV-9). No acute operational problems, significant physiolog-

ical deficits, or clinical sequelae related to the cardiovasuclar and musculo-

skeletal systems are known to have resulted.

I
.01 02 .05 .I .2 .5 1.0 2.0 5.0 I0 20 50

Time, min

Figure IV-6. Comparison of average G tolerance in four vectors of sustained

linear acceleration.
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The Space Shuttle vehicle will impose quite a different acceleration environ-

ment on the crew. The G loads will be lower but will have a longer duration

(figure IV-IO). Visibility requirements during landing necessitate an orien-

tation of the crew couches that results in an acceleration during entry that

is primarily in the +Gz vector. A cardiovascular counterpressure garment
covering the legs and lower torso is being madeavailable for use during Space
Shuttle Orbiter entries to reduce the effects of this acceleration.

Acceptable limits of acceleration for normal, healthy adults are in the range
of 8G to lOG in the positive x-axis and 3G to 5G in the positive z-axis; this

is dependent upon individual tolerance, required functions and performance,

and use of restraining devices, and assumedrelatively slow rise gradients and

finite durations. The time magnitude interval is very important to overall

tolerance.

6 Mean acceleration above 5g: _ . . _...
- . / o.4-S _:(_i!::il

I L !ii:i!i!:!}: !

-120 0 120 240 360

Time.

I
48(

Figure IV-9. Acceleration profile of launch phase of the manned

Mercury-Atlas 6 orbital flight. Strippled areas show

periods of acceleration greater than 5-g.
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Interacting Environmental Parameters

Since the physiological effects of an acceleration force field are many, the

potential for modification of these effects by a number of environmental

factors should be considered. As stated previously, the primary limiting

effects of high gravitational forces are a loss of oxygenation due to effects

on the cardiovascular and the respiratory systems. Oxygen pressure is, there-

fore, a very important interacting variable. Temperature can be expected to

interact when it results in vasodilation and decreased cardiac return. Any

other environmental factor that might affect the cardiovasuclar or respiratory

system would be expected to influence acceleration tolerance.

Effect of Individual Variation

Figures IV-6 (average tolerance curves) and IV-8 (maximum tolerance for test

pilots) provide some indication of the effect of individual variation on tol-

erance to a force field. However, in Space Shuttle missions and in other

future space missions, a much more diverse population may be exposed to force

fields other than that due to gravity at sea level.

Research Needed to Further Define Spacecraft Limits

Research is needed to provide the following:

o Definition of the effects of various durations in a null-gravity

environment on subsequent tolerance to force fields in all axes.

o Definition of the range of acceleration forces resulting in physiological

effect and of tolerance in the population that may fly in space.

o Optimization of countermeasures that may be used under high-force-field

conditions.

Angular Accerl eration

Definition and Description

Angular acceleration can be defined as the response of an object or a body to

a combination of force vectors that results in a change in direction of motion

of the object. Radial acceleration is angular acceleration that occurs durinq

circular motion with the axis of rotation either within the body or outside

the body. Rotary acceleration is radial acceleration for which the axis of

rotation is within the body subjected to the acceleration.
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The convention for describing orientations of angular acceleration is given in

figure IV-3. The symbol +Ry refers to pitch, tumbling, or rotation around the

y-axis; +R refers to rolling, spin or rotation around the x-axis; and +R
--X ' --Z

refers to yaw, yaw spin, or rotation around the z-axis.

Physiol ogical Effects

The physiological effects of the force resulting in angular acceleration are

in part similar to the effects of the forces resulting in linear acceleration.

The forces acting on the body are a function of the radius of rotation and the

velocity. As the axis of rotation increases in length relative to the size of

the body, the physiological effects of the angular acceleration approach the

effects of linear acceleration and the same types of cardiovascular and res-

piratory effects occur. As the radius of rotation being considered approaches

the dimensions of a man, forces act in different directions in different parts

of the body, and, since the force increases as the square of the distance from

the center of rotation, the cardiovascular and respiratory responses are com-

plicated. The +R x rotation around an axis passing through the heart produces

pooling blood in the feet similar to +G acceleration and at the same time
z

produces an increased hydrostatic pressure in the head similar to -G linear
z

acceleration. Movement of the center of rotation toward the feet increases

the -Gz effects. Conversely, movement of the center of rotation toward the

head increases the +Gz effects. The same types of considerations apply to +Ry

and +_Rz acceleration.

The other major effect of angular acceleration is in the vestibular system.

The discussion of these vestibular effects will be very brief in this section,

and the reader is referred to reference 58 for more detailed discussion. Each

vestibular apparatus is made up of three semicircular canals and two otolith

organs. These sensory organs provide information that aid in orientation and

in eye, head, and body coordination. The otolith organs, the urticle and the

saccule, act as detectors for linear acceleration, whereas the semicircular

canals operate as detectors of angular acceleration. The vestibular system

evolved under earth gravity conditions, in which acceleration is limited by

the normal self-induced motions of the individual. When the vestibular system

is exposed to much higher accelerations and combinations of forces, the effect

can be motion sickness and/or sensory illusions resulting in disorientation.
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These effects are likely to be limiting factors, at least in terms of perform-

ance, during rotational acceleration and in short-radius angular acceleration.

If angular acceleration were to be used to integrate an artificial gravity in

future space stations, vestibular disturbances (i.e., motion sickness and dis-

orientation) would be a prime determinant of the minimum acceptable radius.

The stimulus of the vestibular system in the absence of gravity in the Apollo

and Skylab missions has been shown to produce a sequela of motion sickness of

three to five days in some crewmen followed by a period of insensitivity to

motion sickness in response to provocative tests.

Physiological Limits

Subjects without prior experience can usually tolerate rotation rates as large

as 0.63 rad/s (6 r/min) in any axis or combination of axes. Most subjects

cannot initially tolerate rotation rates in the region of 1.26 to 3.14 rad/s

(12 to 30 r/min) and rapidly become sick and disoriented above 0.63 rad/s

unless carefully prepared by a graduated program of exposure. (_n the other

hand, rotation rates of 6.28 rad/s (60 r/min) for as long as 3 or 4 minutes

around the y-axis (pitch) and around the z-axis (spin) have been described by

some subjects as being not only tolerable but pleasant. Intolerability

becomes manifest again at approximately 84.4 rad/s (80 r/min) in the pitch

mode and at approximately 9.4 to 10.5 rad/s (90 to 100 r/min) in the spin

mode. In the pitch axis, with the center of rotation at the heart level,

symptoms of negative acceleration (-Gz_ are demonstrated at approximately R.4

rad/s (80 r/min) and are tolerable for only a few seconds. Some effects of

positive acceleration (+G) namely numbness and pressure in the legs are
Z '

also observed but develop slowly, with pain being evident at approximately 9.4

rad/s (90 r/min). No confusion or loss of consciousness is found, but, in

some subjects, disorientation, headache, nausea, or mental depression are

noted for several minutes after a few minutes of exposure. With rotation in

the spin mode, when the head and trunk are inclined forward out of the z-axis,

rotation approaches tolerance limits at 6.2R rad/s (go r/min). Except for

unduly susceptible subjects, tolerance tends to improve with frequency of

exposure. Long-duration runs in the pitch mode have been endured for as long

as approximately 60 minutes at 0.63 rad/s (6 r/min) in selected subjects.
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These extreme limits are not likely to be a consideration in design of space-
craft. They may set limits to survivability in contingency situations involv-

ing failure of spacecraft orientation control system.

In considering physiological limits to angular acceleration with long-radius

components (such as high-speed aircraft turns), it is appropriate to use the
acceleration limits defined for linear accelerations.

Interacting Environmental Parameters

The most significant interacting variable is the presence or absence of
gravitational forces, particularly where the vestibular effects of radial

acceleration are considered. Those environmental parameters previously
mentioned which interact with linear acceleration also interact with radial
accel erati on.

Effect of Individual Variation

The space motion sickness syndrome that was noted in the Apollo and Skylab

flights did not occur in all crewmen. Susceptibility of a crewmanto motion

sickness produced by provocative tests in one-g apparently had no corollary in
weightlessness.

Research Neededto Further Define Spacecraft Limits

Research is needed to define the causative mechanismof the motion sickness

syndrome under zero-g conditions and to establish preventive and/or ameliora-
tive measures. Research is needed to define the effect of various durations

of zero-g exposure on subsequent tolerance to angular accelerations in all
axes.

C. EFFECTSOFOTHERFACTORS

Space workers may experience other potentially harmful effects other than the

weightlessness of space or acceleration. These include habitat environments,
life support systems in the habitat and work areas, health care, work areas

hazards, and altered biorhythms and diurnal cycles.
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Habitat Environments

The various environments of the habitat area can present a broad spectrum of

potentially adverse physiological or psychological effects. These potentially

adverse environments influence habitat design or operational approaches at the

cost of optimizing conditions for the space worker's well-being and almost

always result in maximum costs and weight penalties. Many trade studies will

be necessary to derive final habitat design of suitable environmental ranges.

Elements of habitat environments include:

o Atmospheric compositions and pressures

o Temperature and humidity

o Noise and vibration

o Light

o Odor

o Bacteria and toxic elements

o Circadian rhythm disruption

o Particulates (ingestibles and inhalation)

o Ionizing radiation (not treated in this document)

Life Support Systems in Habitat and Work Areas

To accomodate to the space worker's daily physiological and psychological

health, safety and general well-being, the following items must be considered.

Food and Nutrition

Hygiene

Rest and recreation

Privacy

Cloth ing

Entertainment

Water (potable, cleansing, industrial)

Sleep

Exerci se

Waste and trash management

Architectural design (space and layout)

Health Care System

An efficacious space Health Care System will provide for prevention and treat-

ment of medical contingencies, trained medical personnel, and proper medica-

tions and equipment. The elements of the Health Care System will include:
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Prevention: Selection of healthy workers, periodic multiphasic screening,

maintenance of health trend analyses, training and indoctrination of

the space worker in important facets of space health, physical flt-

ness programs, etc.

Treatment: Protocols for probable routine or emergency medical contingen-

cies, and medical personnel - (paramedics, physician's assistants,

physicians, and specialists consultants).

Medications and Equipment: Ready supplies of medication for known space

complaints (motion sickness), contingency medications for common,

ground-based complaints (toQthache, headache, etc.) and drugs for

emergency procedures. Equipment for monitoring day-to-day general

health of the space workers as well as equipment to rescue, stabil-

ize, transport and hospitalize a space worker in trouble.

Work Area Hazards

Construction will present many hazards. Workers will be exposed to heated

surfaces, high electrical charges, mechanical dangers, brilliant light and

complete darkness. Lack of references may present difficulties in judging

distances and direction.

Altered Biorhythms and Diurnal Cycles

Space workers will be subject to several types of altered rhythms - from

cellular and glandular internal body rhythms to daily habit routines. Some of

these altered rhythms may be consequential enough to warrant identification

and analysis, to determine their contribution to physiological or psycho-

logical problems, and to treat or correct.

91



V. AMELIORATION OF POTENTIALLY ADVERSE EFFECTS

The physical and social world of a space worker is subject to many dramatic

alterations and without adequate preparation and conditioning, a worker may be

physiologically or psychologically affected adversely. These adverse effects

may be partially or totally prevented if appropriate preventive actions are

taken. If adverse effects are experienced, the severity of duration of the

effect may be reduced with appropriate treatment or corrective action.

These preventive or corrective actions will be discussed in this report

briefly and in general terms.

A. PREVENTIVE ACTIONS

Preventive actions for amelioration of adverse effects include: selection,

training and indoctrination of candidates, estimating and stimulating motiva-

tion, programming physical conditioning, and maintaining good living and work-

ing conditions.

Selection

Satellite Power System workers will be selected for long-term assignments.

The prime consideration will be the worker's capability for maximum productiv-

ity over a five-year career span. To obtain maximum productivity a space

worker must be in good physical condition, be resilient and adaptable to

changing and stressful conditions, dedicated and purposeful in professional

endeavors, and intelligent enough to understand not only the job requirements

but the actions that must be taken to remain healthy in space. The exact cri-

teria for selecting space workers and effective means for testing potential

workers for the desired characteristics must be developed.

Training and Indoctrination

Data from past manned space missions show that extensive training and thorough

indoctrination are strong contributing factors to adaptation in the space

environment. Astronauts reported the importance of training which enabled

them to continue their duties even though they were suffering from malaise of

vestibular origin. Proper indoctrination in the importance of food, exercise,
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hygiene and other health sustaining regimens were responsible for minimizing

potentially adverse physiological effects of the space missions.

Space workers of the future will require extensive training and indoctrination

prior to their initial space flight and sustained training and indoctrination

throughout their career. The nature and extent of this effort must be defined

and suitable programs developed prior to the early SPS missions; the STS and

SOC programs of the 1980's will provide this early opportunity.

Moti vati on

A five year career as an SPS worker will place severe physiological and psy-

chological stresses on the space worker, his or her family or associates.

These stresses can lead to a very high personnel turnover.

Past experiences with various programs involving long-term assignments to

remote and stressful environments have shown that good training and high sala-

ries are not sufficient to maintain a steady work force. For example, off-

shore drilling companies are experiencing a 100% annual turnover in personnel

who are extensively and expensively trained and highly paid. These companies

are desperately seeking better methods for selecting, preparing and sustaining

a dependable work force.

In contrast, the Skylab, Tektite, and our nuclear submarine programs found

their crews to be highly motivated and productive.

It is hoped that careful studies of the effects of repeated missions for the

STS crews and long duration (90 day) missions for the SOC crews will provide

the answers for keeping SPS workers motivated and serving during an effective

five year space career.

Physical Conditioning

Maintenance of the space worker's physical condition is a significant factor

in the amelioration of adverse effects of the space environments. A good

physical condition requires regimens of adequate nutrition, exercise, rest and

hygiene coupled with an enticing food system, enjoyable recreation, and psy-

chological support.
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These requirements must be met between missions as well as during space flight

and must be tailored to the needs of the individual. These needs will be

dependent upon the character of the space worker, the quantity, quality and

type of work to be done, and the levels of environmental stress involved.

The needs of U.S. astronauts and Soviet Union cosmonauts have been studied

extensively at NASA. Although the knowledge derived from these past missions

is extensive there is a great deal to be learned about the needs for the

individuals we may expect to employ in the SPS program.

Some countermeasures, devices and exercises designed to maintain musculo-

skeletal and cardiac condition in space, and to correct for reduced cardiac

output upon reentry are listed here.

Lower Body Negative Pressure Device (LBNP) - LBNP is the application of a par-

tial vacuum to the body from the waist downward. It increases the volume of

the legs temporarily, stresses the cardiovascular system and its controls, and

may provide for maintenance of tonus in vasculature of the legs.

Gradient Positive pressure - Gradient positive pressure is the concept, of

applying pressure to the lower half of the body during the dynamic force of

reentry and after recovery to prevent undue shift of body fluids as a result

of vehicle accelerations and gravity. The pressure is applied in gradient

fashion with the greatest pressures in the regions farthest from the heart.

A gradient positive pressure device, worn to resist the dynamic force of

reentry, is the G-suit or cardiovascular counter pressure garment. It can be

used to prevent the pooling of fluids in the body below the level of the heart

during the acceleration force of reentry and thus forestall possible ortho-

static hypotension.

A G-suit is a pair of tight fitting trousers containing built in air bladders

that are inflated or deflated by a manually operated air valve.

Venous occlusion cuffs - Venous occlusion cuffs are blood pressure cuffs that,

when rhythmically inflated and deflated, interfere with return of venous blood
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to the heart. They may be used to stimulate the development of tonus in

vasculature of the lower limbs.

Positive pressure breathing - Positive pressure breathing (PPB) is the appli-

cation of a breathing system which pressurizes the air being inhaled or

exhaled. By pressurizing the chest, it deters venous return to the heart,

engorges veins, stresses the cardiovascular system and its controls, and is

used to stimulate the development of tonus in vasculature.

Valsalva maneuver - The Valsalva maneuver is a method of pressurizing the

chest by closing the glottis or obstructing the nostrils while attempting to

exhale. Its effects are similar to those of positive pressure breathing.

Bone stress - Bone stress is achieved by using skeletal loading devices to

forestall the effects of disuse in weightlessness. Several forms were tested,

but in long-term bed rest studies (up to 17 weeks) no significant protection

was afforded to the problem of bone loss.

Double trampoline - A double trampoline is a device composed of two trampoline

heads between which a human can oscillate and receive sensory impacts which

mimic the effects of gravitational acceleration on susceptible systems,

including the cardiovascular system. (No studies yet conducted.)

Tumbling- Tumbling routines can be devised to simulate gravitational acceler-

ations to members (arms and legs) at a distance form the body's center of

gravity. (No studies yet conducted.)

Electrical stimulation of muscles - Electrical stimulation of muscles has been

proposed to exercise muscles in weightlessness in order to prevent disuse

atrophy and to provide skeletal stress. (No studies yet conducted.)

Exercise - Exercise coupled with another stressor (LBNP, cuffs, PPB or bone

stress) has been proposed to produce effects that would be difficult to

achieve singly in weightlessness. Particular reference is made to coupling

exercise with a means of producing a simulated gravitational effect on

cardiovascular or skeletal systems while providing muscular exercise. To

95



date, all studies have not afforded protection but the pregoing combination
has not as yet been tested.

Hypoxia -Hypoxia is a powerful cardiovascular, respiratory and neurohumoral

stressor which causes shifts in the electrolyte and acid-base balance and may

counter the acidosis believed to occur in weightlessness. It may ameliorate

disuse phenomena such as demineralization, but even so, it is doubtful that

long periods of hypoxia would be feasible.

Medication - Medication has been proposed to counteract or ameliorate weight-

less responses, e.g., hormone therapy to curtail loss of potassium and

calcium.

Centrifugation - Centrifugation is a

gravity to a space vehicle and as a

physiol ogy.

technique for supplying artificial

stressor in studies of acceleration

The SOC program is expected to yield significant information in this area of

interest.

Living and Working Conditions

The physical and psychological well being of the SPS space worker will be

affected by environments that are controllable as well as those that are

inherent in space flight. The living and working conditions of the space

worker will need careful consideration if the long and repeated missions are

to be made acceptable. Some of the more obvious controllable elements are:

o Lighting

o Temperature

o Humidity

o Breathing Environment (pressures and constituent gases)

o Noise

o Toxic and Noxious Elements

o Architecture (space and layout)

o Clothing

o Social and Management Structure
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B. TREATMENTANDCURATIVEACTIONS

Wemust expect that with manyhundreds of space workers involved, somewill be

adversely affected by the environments of the space missions. The adverse

effects may vary in severity and duration. Curative action will be taken to
exclude the cause and treatment will be administered to eliminate the effect.

Somepossible actions are discussed briefly below.

Task Reassignment or Schedule Modifications

The assigned work task of a person may be such that undue mental or physical

stress results. A change of task may provide more healthful conditions by

changing neurologic, metabolic, environmental, etc., stresses.

Schedule modifications may improve conditions affecting eating, sleeping and

social activities.

Physical Conditioning

The physical conditioning needs will vary with individuals and may change with

time. Where a worker is getting improper diet, rest, exercise, etc., some

adverse effects are probable and the physical conditioning regimen must be

adjusted to correct them. Frequently this may be a matter of personal disci-

pline. If the worker is deliberately neglecting a healthful regimen, closer

supervision may be involved in the corrective action.

Medical Treatment

In situations where the worker has experienced a medical contingency involving

illness or injury due to any cause there must be adequate medical treatment

available to stablize or heal the victim.

Medical capability will include diagnostic and treatment systems with suitable

support for rescue, transportation, and communications. These systems have

been extensively defined, analyzed and evaluated in several developmental pro-

grams and tested during past manned space missions.

97



Altered Living Conditions

If some element of the space worker's living conditions causes an adverse

effect or if a change in living conditions is held necessary during the treat-

ment peiod, then these conditions can be modified. Such changes could range

from moving the individual to a quiet area or to complete isolation.
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VI. RESEARCH PLAN

A. GENERAL

The SOW, paragraph 5.1.2 Research Plan Preparation, requests that NASA prepare

a research plan addressing the uncertainties in the knowledge regarding the

health and safety effects of the zero gravity environment and acceleration/-

deceleration and which, if carried out, will make future assessments more

reliable and/or help to eliminate or ameliorate adverse health effects.

In responding to this SOW task, NASA again has taken the liberty of treating

all the space environments except the radiation enviroment. We have also

assumed that the period of time covered by the plan will extend from the pre-

sent until just prior to the first SPS space mission (approximately 20 years).

It is anticipated that NASA-JSC will be conducting two major space programs in

the 1980's and early 1990's - the Shuttle/Spacelab Space Research and the

Space Operations Center. Our Life Sciences organizations will be conducting

research in support of these programs. This research can be designed to yield

information needed to identify potential adverse effects of the SPS-type space

operations and suitable countermeasures.

Rather than present the research plan as a formalized planning document, we

have chosen to provide information relating to the types of research that NASA

scientists feel should be accomplished and indicate when the results of this

research will be available. We have also provided information on which insti-

tutions and agencies are currently involved in the "NASA" research program and

how DOE may become involved.

To describe the research plan to qualify humans for long periods in space as

merely a NASA plan is an injustice because the people who aid in planning and

conducting the research and validation are not exclusively NASA personnel;

this program is international in scope.
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The SPS program will introduce to NASA a new opportunity to extend and expand

currently planned research. It will also provide an opportunity for DOE to

participate in the planning, conduct and administration of the life sciences

research activities.

B. RESEARCH AREAS

During the next few years NASA-JSC will be involved in research designed to

support the general objectives of Life Sciences:

o To determine effects of space environment on life systems.

o To gain greater understanding of life processes and systems.

o To extend crew health care capabilities for space utilization and

exploration.

o To develop improved life support and protection systems for people

working and living in space.

o To develop crew operations and equipment design to enhance crew/space-

system integration.

o To develop processes that exploit the advantages of space for

bioprocessing.

o To determine advantages of space to help support clinical research on

Earth, and

o To synthesize space technology to health care for people on Earth.

This research will be conducted in various laboratories thoughout the nation

and in space aboard the Shuttle/Spacelab.

The research will be directed to support general objectives of Life Sciences

as well as the specific needs of NASA space programs. There are three spe-

cific programs that have some probability of being funded in this decade - the

STS, SOC and SPS programs.

Bioresearch done for any one program will often benefit all programs, and for

this reason we have chosen to include a general description of the potential

research which may support the needs of the SPS program.
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Currently On-Going Research

NASA-JSC is currently involved in over 100 ground-based experimental studies.

These studies relate to medical and clinical protocols, space physiology, life

support systems, extravehicular systems, health maintenance and crew selec-

tion. Documented records of these on-going studies are available at JSC. Some

studies have been active for several years and others have been recently

initiated to cover new research areas.

A partial listing of the major groups of experiments is shown in table VI-I.

These Research and Technology Objectives and Plans (RTOP) may consist of from

2 to 15 individual studies. An example of one group is shown in table Vl-2.

Shuttle/Spacelab Space Experiments

During the Shuttle/Spacelab missions, it is anticipated that approximately 100

Life Sciences experiments will be flown to explore the physiological/psycho-

logical effects of the space environment. Another 20 to 30 experiments will

be performed to support the definition of requirements for health care, life

support and protective systems (LS/LP) or habitability systems.

The Shuttle/Spacelab missions will be 7-day or 30-day missions and conse-

quently will not provide an opportunity to perform experiments on long dura-

tion space exposure. Life Sciences at JSC has a responsibility for crew

health maintenance and for assuring that crewmembers are selected to meet

certain medical selection criteria. It is anticipated that some observations

regarding physiological problems and fatigue build-up of cre_-_em...bersmay pro-

vide information useful in the selection, training and indoctrination of

future space workers.
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TABLE VI-I. CURRENT RESEARCH

RTOP GROUP NO.

199-10-11

199-10-21

199-10-31

199-10-41

199-20-11

199-20-21

199-20-31

199-20-51

199-20-61

199-20-71

199-20-91

199-60-11

199-60-21

199-60-31

199-60-41

199-60-71

199-70-11

TITLE

Operational Laboratory Support

Medical Selection Criteria

Crew Health Maintenance

Systems Habitability Verification

Cardiovascular Deconditioning

Space Motion Sickenss

Bone/Muscle Alterations (See table Vl-2)

Blood Alterations

Fluid and Electrolyte Changes

Radiation Effects and Protection

General Research

Life Support Systems

Extravehicular Systems

Nutritional Requi rements

Food Production

Man-Machine Systems

Program Definition
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TABLE Vl-2

IYPICAL RTOP: 199-20-31 Bone/Muscle Alterations

Code Task Title

01

03

04

O5

O7

08

09

10

11

12

13

Long Term Bed Rest

Calcium and Bone Metabolism

Musculoskeletal Deterioration

Muscle Disuse Atrophy

Skeletal Muscle Disuse Atrophy

Systems/Cal cium Metabol ism

Bone Implant/Growth

Bone Densi ty/Tomography

Calcium Metabol ism Parameters

Vitamin D Metabolism

Vitamin D/Cal ci toni n/Parahormone

Research in Support of the SOC Program

In support of the OSC program, Life Sciences will conduct a number of studies

relating to the systems definition of health care, LS/LP, and habitability

systems. These SOC systems could serve as demonstration models to help formu-

late SPS design and operational approaches.

To illustrate the type of research involved in our planning, we have included

a list of SOC research proposals submitted by NASA scientists. These are

shown in table VI-3. Table Vl-4 relates the research proposal to a particular

biosystem or entity.
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Brief forms of each proposal will be reviewed and those selected prioritized

as a next step in the formulation of an SOC support plan. Further information

about proposals listed are available through the Space and Life Sciences

Directorate, JSC.

Of equal importance is the experience to be gained from the SOC operational

activities. This program will involve from 4 to 16 space workers living in

modular 4-man habitats for periods of 90 days. The space activities, work

schedules and mission cycles will be similar to those described in the SPS

reference report. For the first time crewmembers will be making repeated mis-

sions into space and working at "routine" jobs in the space environments. The

long term and accumulative effects of repeated trips into space on the crew-

members and their families (or social contacts) will be explored. Because of

crew size and length of mission the studies will be limited on the STS pro-

gram and more extensive on the SOC program.

TABLE Vl-3. SUGGESTED SOC RESEARCH PROPOSALS

1. To advance biochemistry studies (electrolyte levels and levels of steroid

hormones).

2. To study physiological/biochemical aspects of bone demineralization

(biochemical data; animal data; remedy development).

3. To study inflight clinical microbiology capability (contamination control;

clinical lab; system improvements).

4. To study inflight clinical/research capability (health monitoring; broad

banded).

5. To study infectious disease control (study populations, adjust balances).

6. To study SOC atmospheric monitoring (toxicology trace gas analysis).

7. To determine nutrient requirements under weightless conditions (develop

requirements through surrogates).

8. To adapt recommended dietary allowances to long-duration space fliqht

(determine nutritional requirements vis-a-vis stress, through humans and

surrogates).

9. To study immune competence during long-duration space flight (determine

immune responses of 500 subjects on 90-day flight).
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TABLEVl.3 (Continued)

10. To study erythrokinetics during long-duration space flight missions

(examine changes in red cell replacement in space flight; kinetics,

mechanisms,chronic reexposure).

11. To study and develop methods to predict and treat myocardial infraction,

particularly in space where fluid shifts, volume, endocrine, and excretory

changes occur.

12. To plan and execute countermeasure development for bone demineralization.
13. To determine diagnostic and research equipment and radio-pharmaceuticals

for inflight utilization; perform modifications for space use.

14. To prevent and correct cumulative atrophic effects on muscle.

15. To study particulate handling by pulmonary system.

16. To assess clothing considerations in a large space habitat (clothing

selection, laundering and cleaning).

17. To study safety considerations in the space operations center regarding

loss of pressure (pressure suits, emergencypressure system in vehicles,
transfer sphere, pressure haven).

18. To develop non-invasive techniques to monitor subclinical bubbles in the
tissues of space workers (develop instrumentation for research in gas

embolus formation [bends]).

19. To develop and utilize a quantitative index of bends susceptibility

(consider and evaluate susceptibility factors - age, exerise, body fat -

in bends).

20. To determine limits of repetitive decompressions in space workers

(evaluate limits of successive exposures).

21. To determine cabin and suit pressures for space operations center (develop
cabin and suit pressures for operational and emergencyuse).

22. To determine humidity control in large spacecraft (determine engineering

penalties of different options).
23. To determine temperature control in a large spacecraft (study of costs and

benefits of various strategies).

24. To develop a proposal for a health maintenance facility for the Space

Operations Center (develop a space clinic).

25. To study the effect of prolonged exposure to weightlessness on sensory
system functions (effect on sensory system function; adaptation, and

readaptation from one-g to weightless).
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TABLEVl-3 (Continued)

26. To study the gravity receptor alterations during prolonged exposure to

weightlessness (determine effects of long-term exposure to weightlessness

such as morphological or functional alterations, which may or may not be
appropriate for one-g; use humansand surrogates).

27. To study space motion sickness (develop predictors, countermeasures and

operational procedures to minimize sickness effects).

28. To determine an advanced feeding system (define food system for SOC).

29. To determine reclaimed water quality requirements (develop standards for

potable water; develop standards for non-potable water for hygiene;

develop water quality monitoring devices).

30. To study and determine clothing/bedding provision (determine method or

recycling or disposal).
31. To study and determine solid waste/refuse disposal (identify and quanti-

tate material; determine meansof disposal).

32. To determine advanced metabolic waste management(develop a multi-use

system).

33. To study metabolic waste sampling and monitoring (devise system for

sampling humanwaste for scientific and clinial use).

34. To study personal hygiene (identify requirements for hygiene and develop

equipment).

35. To study housekeeping methods (evaluate provisions for housekeeping and
sanitation for SOC).

36. To provide for environmental control systems (develop hardware to close

water and atmospheric loops).

37. To analyze volatile organic contaminants in the spacelab atmosphere
(collect air samples and monitor spills).

38. To study inflight analysis of aqueous samples using the miniature fast

analyzer (to qualify a laboratory chemical analyzer in zero-g to support

research and clinical requirements).

39. To study body fluid and electrolyte loss during early space flight

(examine fluid compartments and measure content of samples to chart

circulatory and renal adaptation to zero-g).

40. To determine the effects of null gravity on the effectiveness of nitrogen
washout (conduct nitrogen washout trials in null gravity prior to EVA's).
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TABLE VI-3 (Continued)

41. To study the effect of zero-g on sweat (quantitate sweat rates,

evaporation dynamics in zero-g).

42. To study basal metabolism in zero-g (measure effect of zero-g on

metabolism and on postural muscles).

43. To study cell separations under microgravity conditions (space experiment

to isolate kidney cells capable of producing urokinase).

44. To study tissue culture growth/fermentation in low-g (space environment

where gravity-induced floating or sedimentation are reduced and culturing

is optimized).

45. To study cell to cell interactions and biosynthesis dynamics in micrograv-

tty (space experiment to study cell physiology especially biosynthesis in

zero-g).

46. To study laboratory animal for depression of CNS function produced by the

combination of zero-g stresses and the intake of low levels of chemical

c__po,m_ (in-flight toxicology to quantitate multistress and reevaluate

space flight criteria [tolerances]).

47. To study coronary artery perfusion and systemic blood flow distribution

(space experiment to quantify myocardial perfusion and systemic flow by

radloi sotopes).

48. To study pulmonary ventilation/perfusion and thoracic blood volume altera-

tions in zero-g (space experiment to measure respiratory parameters in the

presence of fluid shifts to the thorax).

49. To study in-flight saline ingestion as a counte_r.,easure for reeexposure to

normal gravity (space experiment to forestall symptoms or orthostatic

intolerance in the presence of reduced blood volume by supplying physio-

1ogical 1y-acceptabl e fl ui d upon recovery).

50. To study electromechanical cardiac activity (monitoring of cardiac phenom-

ena in flight for clinical and research use).

51. To detemine aerobic and muscular strength exercise requirements for

spaceflights (develop exercises to enhance muscle strength and aerobic

capacity and to uplift or maintain physical work capacity and physical

conditioning as well as to promote crew health.
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52. To study physical performance in the space station (design counter-

measures for reduced human physical performance, especially life support

equipment, work stations, stabilization devices, locomotion aids, and

exercise devices).

Research in Support of the SPS Program

Much of the biological and biosystems research scheduled for SOC will be

applicable to SPS. There are, however, several characteristics of the SPS

program that will require research directed specifically to SPS.

These features include:

o A large number of people - hundreds in space simultaneously,

o A large variety of tasks,

o A large number of female workers,

o Repeated long duration missions over a five year career span, and

o Workers in GEO and LEOhabitats and work area.

The significance of these unique features is that life support, protective,

habitability and health care systems developed for previous programs would

require scaling up or major redesign/replacement will a new system concept.

In addition, the operational environments might introduce new psychological

and sociological situations that may impact the worker and his family and

earth-based associates. These projected situations will introduce new areas

of research for NASA.

C. SCHEDULE

A schedule to provide information relating to the health and safety of SPS

space workers has been formulated. Consideration is given to the "need" date

for finalizing SPS workers' schedules (about 1995) and the currently antici-

pated manned space program preceding or concurrent with the SPS space mis-

sions. This schedule is shown in figure VI-I.

The period between now and the date when final SPS decisions will be made for

such items as mission stay time, number of shifts, work schedules, and ground-

based time between missions is currently estimated to be about 2_ years.
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There will be a number of milestones during that time period when NASA will be

able to provide supplemental information for making the decisions involving

SPS workers' health and safety. These milestones are indicated in figure

VI-l. A brief summary of the information now available at each milestone is

outl ined below.
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i. After the first year of Shuttle missions, some crewmembers will

have made repeated missions in LEO. These mission experiences will

provide information regarding the trends in physiological and phys-

chological responses of the crewmembers, and their families to this

new Iife style.

. As preparations for constructing a SOC get underway, extensive

gound-based testing, crew training, and multiple mission simula-

tions (demonstrations) will be conducted. Extensive information

relating to crew health, safety and well-being, and to their

relatives will be provided. In addition, this information is

expected to indicate the type of life support and protective

systems needed to enhance the morale and to provide living comfort

for the space workers. It is during this period that many of the

concepts of crew scheduling will evolve.

The gound-based training and mission simulations will duplicate the

operational aspects of both flight and ground operations. It will

also serve to highlight potential problem areas in the hardware

system, the operational procedures and the human performance of

flight and ground crews.

. With construction of the SOC progressing during several mission

periods (9 months to one year), NASA will again be in a position to

offer a significant amount of additional information relati,,e to

the crew schedules, the physiological/phychological health and

safety of the crew, morale factors, and crew-related systems design

and operational approaches for SPS habitat and work stations.

During this period the cre_embers and their families will have

experienced all phases of premission, mission and intermission

activities, and the repeated experiences of adjustment.

The experience of mission repetition will enable NASA to understand

the cumulative effects of the zero-g, one-g, and the transitional

phases relating to job effectiveness, worker and family morale, and

the physiological/psych,logical condition of the crewmembers.
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Additional information relating to working conditions, habitation

suitability, number and type of medical contingencies, social

structure tendencies, group dynamics, etc., will become avail able.

. During S0C operations, NASA will continue to accumulate knowledge

and experience while working with additional crewmembers, a greater

variety of skills and intellectual levels, different social and

organizational structures, and improved support systems, habitat

configurations, operational procedures, etc.

5 & 6. As the time approaches to send large numbers of workers into space

to build the SPS construction bases, NASA will have gained much

experience in preventing or correcting any adverse effects of the

space environment on space workers. In addition, they will have

learned much about maintaining high work effectiveness through

worker selection, training and motivation. Increasing numbers of

space workers will be required as the SPS construction bases in LEO

and GEO develop. Increased crew reponses to the space environment,

working conditions and crew support systems will permit NASA to

make progressive evaluations based on the increased numbers, per-

sonalities and skills represented.
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APPENDIXA

ACRONYMS AND ABBREVIATIONS

ACTH

ADH

AGARD

ASTP

CNS

DOE

EMG

EVA

GEO

h (hr)

JSC

LBNP

LDH

LEO

LS/LP

NASA

PPB

(r/min)

rpm

rad

REM

RNA

RTOP

s (sec)

SDH

SOC

SOW

SPS

STS

Zero-g

(or O-g)

Adenocorticotrophic hormone

Antidiuretic hormone

Avisory Group for Aeronautical Research and Development

Apollo Soyuz Test Project

Central Nervous System

Department of Energy

Electromyography

Extravehicular activity

Geosynchronous Earth Orbit

hour(s)

Lyndon B. Johnson Space Center

Lower Body Negative Pressure

Lactate dehydrogenase

Low Earth Orbit

Life Support and Life Protection

National Aeronautics and Space Administration

Positive pressure breathing

revolutions per minute

radiari

Rapid eye movement

Ribonucleic acid

Research and Technology Objectives and Plans

second(s) (time)

Succinate dehydrogenase

Space Operations Center

Statement of Work

Satellite Power System

Space Transportation System

zero gravity

NASA-JSC
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